Ultrasonic probe
In the past month, I have been paying close attention to the application of bionic structures in the industrial field. In the process of searching for new product ideas, I got to know a British company Renishaw, which is a world-leading company in mechanical precision measuring equipment. The company has newly developed a waterless ultrasonic probe for measuring thickness. The key invention is to use a soft hydrophilic material that can store water to replace the traditional immersion probe. However, the service life of the probe is only one to five days, and the measurement efficiency is very low, mainly because the soft hydrophilic material is not resistant to wear. This makes its application very limited. I am trying to invent a bionic structure to solve the problem of Renishaw technology. I plan to apply my previous research results in bionic microporous structures to manufacture an ultrasonic thickness measuring probe with excellent performance and long life.
Research
Process
In order to implement the water storage function as the soft hydrophilic material from Renishaw does, I looked for capillary structures that can store water and can be used on ultrasonic probes. I thought of vascular bundles of plants I had learned from my biological course. Since the vascular bundles of plants can be described as a geometry with thin hollow pipes intersecting with each other, vascular bundles of plants draw nutrients and water into plants with great capillary force. I then thought of working out a geometric structure imitating that of vascular bundles, letting the bionic structure possess the same capillary function as vascular bundles do.
Figure 1: vascular bundle inside of plant stems
After further research on the geometrical properties of vascular bundles, I found that vascular bundles can be described as 3D Voronoi diagrams. I then started to find ways of working out 3D Voronoi diagrams that can be applied to solid geometries like ultrasonic probes. However, 3D Voronoi diagrams are complex geometries that can be hardly modeled by hand. I need to find new computer graphics tools to generate the diagrams.
I posted my question on a corresponding forum. With the suggestions from the forum, I found Grasshopper, a plug-in that can generate complex solid geometries, to generate 3D Voronoi diagrams on a cube of 10mm in length.
Figure 2: battery diagram programmed with Grasshopper to generate 3D Voronoi Diagram
Figure 3: 3D Voronoi Diagram generated with Grasshopper
In mathematics, a Voronoi diagram is a partition of a plane into regions close to each of a given set of points. For each point there is a corresponding region, called a Voronoi cell, consisting of all vertexes of the plane closer to that point than to any other. By setting the number of points within a plane, I can control the density of Voronoi cells in each plane as one point corresponds to one Voronoi cell as explained. Occupying this algorithm in the generation of 3D Voronoi diagrams, I can set the volume share of Voronoi cells of the 3D Voronoi diagram in the cube.
Figure 4: Voronoi Diagram
After further optimization, I finally set the Voronoi cells to occupy 75% of the volume of the 3D Voronoi diagram in the cube. Hollowing the cells out, I received a cube full of intersecting pipes with diameters from 0.2 to 0.5mm intersecting with each other, imitating the vascular bundles of plants.
Figure 4: the cube generated with Voronoi cells occupying 75% of the volume